
Measuring Uncertainty in International Relations:

Heteroskedastic Strategic Models

Muhammet A. Bas ∗

Department of Government
Harvard University

1737 Cambridge Street
Cambridge, MA 02138

Email: mbas@gov.harvard.edu

Keywords:
heteroskedasticity, strategic interaction, uncertainty in IR

private information, bounded rationality

Abstract

Actor-level variations in the amounts of uncertainty has been widely ignored in the
growing literature on statistical models of strategic interaction in international rela-
tions. In this paper, I provide a tool for testing theories about the level of uncertainty
in strategic interactions. I show that ignoring potential variations in levels of uncer-
tainty across different cases can be a source of bias for empirical analyses. I propose
a method to incorporate this form of heteroskedasticity into existing estimators and
show that this method can improve inferences. With a series of Monte Carlo exper-
iments, I evaluate the magnitude and the severity of the bias and inconsistency in
estimators that ignore heteroskedasticity. More importantly, the tools developed in
this paper have many interesting substantive application areas. Examples considered
include measuring speculators’ suboptimal behavior tendencies in international cur-
rency crises; and capturing varying levels of signaling and Bayesian updating behavior
in the recent strategic models of signaling.
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1 Introduction

In recent years, increased attention has been given in the international relations literature

to testing hypotheses about strategic interaction (Fearon, 1994b; Smith, 1999; Signorino,

1999; Schultz, 1999; Leblang, 2003; Signorino and Tarar, 2006; Bas, Signorino and Walker,

2008; McLean and Whang, 2010). More recently, scholars have focused on making sure that

empirical models used to test theories about strategic interaction are compatible with these

theories. Alternative estimators are developed depending on the form of the underlying

strategic interaction, ranging from simple 2-by-2 discrete choice dynamic games to games of

signaling, and dynamic continuous choice games (Signorino, 1999; Lewis and Schultz, 2003;

Esarey, Mukherjee and Moore, 2008; Ramsay and Signorino, 2009; Whang, 2010). Whether

the topic is deterrence (Signorino and Tarar, 2006), economic sanctions (Whang, 2010), or

international currency crises (Leblang, 2003), the use of these estimators made it possible

for the empirical estimation to follow closely and remain compatible with the underlying

theoretical model that involves strategic interaction.

One major advantage of these estimators - strategic models - is that they enable testing

non-monotonic hypotheses out of a theoretical model about the effects of covariates of interest

on strategic actor behavior. Such hypotheses are hard to test with traditional logit or probit

regression models.1 Signorino and Yilmaz (2003) show that using logit or probit regression

models to capture strategic interaction results in functional form misspecification akin to an

omitted variable bias.

Unlike in linear regression or probit, the error terms in strategic models are not just

nuisance parameters. They are usually theoretically motivated, and it is this feature that

makes statistically estimating a strategic model possible by providing the transition from a

1There is a debate in the literature about the usefulness of logit or probit in testing non-monotonic
hypotheses arising from strategic interaction. See Carrubba, Yuen and Zorn (2007a), Signorino (2007) and
Carrubba, Yuen and Zorn (2007b) for this debate.
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game theoretical model to a statistical model. One theoretical source of uncertainty pro-

posed, for instance, is the existence of boundedly rational actors that randomly deviate from

rational behavior in an unpredictable manner during game play (Signorino, 2003).2 More

frequently, private information that actors have about their payoffs has been used as a source

of uncertainty that converts game theoretical models into statistical models that can be es-

timated (Signorino, 2003; Lewis and Schultz, 2003; Whang, 2010). Signorino (2003) shows

that what the analyst chooses as the source of uncertainty in his or her statistical model is

important because each type of uncertainty results in different probability models and the

misspecification of the error structure can result in bias and inconsistency.

Regardless of the type of uncertainty, one common assumption in the existing statistical

strategic models is that the uncertainty is homoskedastic. If the source of uncertainty is

agents’ bounded rationality, homoskedasticity means that all the actors in the data set have

the same tendency to deviate from rational behavior, or that there is only one distribution

with constant mean and variance that represents the actors’ and the analyst’s prior belief

about a given actor’s deviations from rational behavior. Similarly, if the source of uncertainty

is private information, homoskedasticity implies that all the actors in the sample have the

same amount of private information about their payoffs.

Should researchers have any reasons to suspect heteroskedasticity in a strategic model

in international relations? Uncertainty is at the heart of strategic interaction, and accord-

ingly it plays an important role in theories of strategic interaction in international relations.3

Many theories predict that levels of uncertainty vary across different actors or in different

interactions (Fearon, 1994a; Schultz, 1998). Therefore, regardless of whether one is dealing

with bounded rationality or private information as the theoretical source of uncertainty, the

2The same assumption about actor rationality exists in McKelvey and Palfrey’s 1995; 1998 Quantal
Response Equilibrium.

3For instance, in an influential article, Fearon (1995) argues that uncertainty is one of the main reasons
why rational states fight instead of reaching mutually preferable peaceful bargaining solutions.
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answer to the above question is likely to be yes.4 For instance, in making expected utility

comparisons, players might have differing tendencies to deviate from optimality. Bounded

rationality is an individual characteristic, and as such the tendency to err is highly likely

to vary across different actors in a given data set. Even with the same actor, this tendency

might vary depending on time, the environment, or the specific actors faced in a strategic

interaction. Assuming that everyone has the same likelihood and tendency to make mis-

calculations might be too restrictive. Similarly, in a private information specification, the

severity of information asymmetry can change depending on actors’ characteristics or the

strategic environment. In the international conflict literature, for instance, there is a big

debate about the effect of regime type on the amount of private information states have in

international conflict (Fearon, 1994a; Schultz, 1998, 1999, 2001). By limiting their focus to

homoskedastic models, empirical international relations scholars cannot incorporate these

possibilities into their research.

What are the consequences of disregarding heteroskedasticity? It has been widely known

that heteroskedasticity is only an efficiency problem in linear regression, and one’s estimates

remain unbiased and consistent even if he or she does not model heteroskedasticity (Greene,

2003). This result is not generalizable, however, to nonlinear regression models with dis-

crete dependent variables such as logit or probit (Yatchew and Griliches, 1985). As strategic

models can be regarded as multi-equation systems of probit and logit models, when not cor-

rectly modeled, heteroskedasticity might cause biased and inconsistent estimates in strategic

models as well. In other words, when we have theoretical expectations that each player in

a strategic model has a different tendency to make suboptimal choices, or different players

possess different amounts of private information in a strategic situation, estimating conven-

4A quick look at the existing empirical analyses in the literature that employ strategic models supports
this statement. Most of these analyses use panel data, combining many actors that are observed over a
long period of time. Leblang (2003), for instance, uses a data set consisting of monthly observations of 90
developing economies from January 1985 to December 1998. It is highly likely that the levels of uncertainty
will show variation in such diverse samples.
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tional strategic probit or logit models with fixed homoskedastic error variances may result

in bias.5

This paper aims to contribute to the burgeoning literature on strategic models and com-

plement the existing estimators in three ways: first, I propose a method, heteroskedastic

strategic probit (HSP), that helps capture heteroskedasticity in strategic models and cor-

rect the potential bias and inconsistency when the data generating process violates the ho-

moskedasticity assumption.6 I demonstrate that HSP should be preferred over homoskedastic

SP when heteroskedasticity is suspected, except in very small samples, due to the relative

inefficiency and potential fragility of HSP in such samples. Secondly, and more importantly,

I show that HSP makes possible addressing many substantively interesting research ques-

tions by providing scholars with an opportunity to measure different types of actor-level

uncertainty that exist in the strategic interactions they analyze. Finally, I show that the

proposed method can have better identification properties in the sense that, under certain

conditions, it enables simultaneous estimation of multiple theoretical sources of uncertainty

in a given model, which is not possible to accomplish with existing homoskedastic strategic

models.

Scholars have previously noted a lack of attention given to theorizing the variance param-

eter – the “second moment” – in the empirical international relations literature (Braumoeller,

2006). They emphasized the importance and the potential value of substantively interpret-

ing heteroskedasticity instead of treating it just a nuisance (Downs and Rocke, 1979). Due

to the important role uncertainty plays in strategic interaction, it is even more important –

5The potential problems associated with a constant variance assumption have been acknowledged in the
recent literature on strategic models. In comparing different models of strategic choice, Wand (2006) notes
that different choices for the common constant variance parameter in strategic models result in different
model predictions. Thus, if the data violates common variance assumption, one would expect that the
failure to take this into account in the statistical model would bias inferences.

6I use the label strategic probit (SP) to refer to strategic estimators with Normally distributed uncertainty
structure, as in Signorino (2003).
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and substantively more promising – to develop and test theories about variance in strategic

models. Thus, the HSP developed in this paper will hopefully prove to be very useful to

empirical scholars of international relations.

The paper proceeds as follows. In the next section, I derive the HSP estimator for

a simple 2-player discrete choice game. Then, using Monte Carlo simulations, I analyze

the bias in existing strategic models that do not model heteroskedasticity; investigate the

potential effects of using a heteroskedastic estimator when heteroskedasticity is not present;

and examine the properties of a hybrid heteroskedastic model that incorporates multiple

sources of uncertainty. Finally, I discuss two application areas for HSP models. I first

replicate Leblang’s (2003) analysis of speculative currency attacks using the HSP estimator,

and then discuss the potential extension of the technique to the recent statistical strategic

models of signaling and Bayesian updating.

2 Heteroskedastic Strategic Probit

Signorino (2003) proposes two distinct theoretical sources of uncertainty in statistical strate-

gic models. One source of uncertainty is agent error. With the agent error specification, the

analyst assumes that players are boundedly rational, or they tend to misperceive each other’s

utilities, or they make errors in implementing their actions. A second source of uncertainty

is private information. In this specification, a player possesses private information about his

payoff from a particular outcome. It is assumed that only the player observes his true utility

from an outcome; his opponent and the analyst regard it as random and can only know its

distribution. In sum, “agent error allows for nonrational behavior or ‘accidents’, whereas

private information allows for rational behavior and incomplete information” (Signorino,

2003).
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[Figure 1 about here]

Figure 1 represents these two sources of uncertainty graphically in the context of a simple

game theoretical model of international conflict between two states, denoted as Player 1 (P1)

and Player 2 (P2).
7 In this sequential model, P1 moves first and chooses between attacking

P2 or not. If P1 does not attack, Status Quo is the outcome. If P1 attacks, then P2 decides to

resist or capitulate. In the first case, the outcome is War. In the latter case, the outcome of

the game is Capitulation. Players have utilities associated with each outcome, and expected

utilities associated with each action that are derived based on the outcome utilities. Figure

1(A) depicts an agent error specification: error is associated with Player 1’s comparison

of expected utilities of deciding to attack or not. That is, P1 makes an implementation

error or miscalculation while comparing the choices of attacking and not attacking. The

random component αij represents the suboptimal behavior by Pi for choosing the action j

that cannot be predicted by the opponent or the analyst. Similarly, Figure 1(B) presents a

private information specification, in which the random components εij are attached to Pi’s

utilities, representing Player i ’s private information about his or her payoff from outcome

j. These components cannot be observed directly by the opponent or the analyst, who only

have distributional information about the utility values.

The HSP model that I describe in this section shares an important feature with the

heteroskedastic probit model developed by Alvarez and Brehm (1995, 2002) to analyze the

heterogeneity in survey responses to abortion policy issues. In Alvarez and Brehm’s het-

eroskedastic probit model, the error standard deviation σi is assumed to vary across obser-

vations. In particular, σi is linked to regressors through a parametric functional form. This

7Although I introduce the heteroskedastic model with very a simple two-player sequential game to keep
the presentation simple in this paper, it is easy to incorporate the technique to more elaborate games such
as the International Interaction Game analyzed in Bueno de Mesquita and Lalman (1992) and Signorino
(1999). Also, heteroskedasticity can be incorporated into more complex games with signalling and Bayesian
updating (Lewis and Schultz, 2003; Whang, 2010). Later in the paper, I discuss the implications of ignoring
heteroskedasticity and the substantive benefits from modeling it in such games.
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intuition will also underlie the HSP model presented below. Harvey (1976)’s multiplicative

heteroskedasticity specification will be used throughout the paper to model heteroskedastic-

ity, in which the error standard deviation takes the following form:

σ = exp(Zα) (1)

where Z is the matrix of regressors that are assumed to affect the variance of the error term,

and α is the coefficient vector for these regressors.8

I now derive the HSP outcome probabilities and the log-likelihood function for the agent

error model presented in Figure 1(A).9

2.1 Heteroskedastic SP with Agent Error Specification

The true utility for Player i from outcome Yj, j ∈ {1, 2, 3} is Ui(Yj), and both players can

observe this. Similarly, the expected utility calculated - potentially with error - by Player i

for action ak, k ∈ {1, 2, 3, 4} is EU∗
i (ak). The analyst and the opponent cannot observe the

exact deviation from optimality involved in the calculation, but they possess distributional

information about agent error terms αik, which are assumed to follow a Normal distribution

with zero mean and variance ν2
ik, denoted N(0, ν2

ik). Thus, the analyst and the opponent

can calculate the expected value of the expected utilities with miscalculations averaged out,

which is EUi(ak).

In order to derive the choice probabilities, we need to work backwards up the game tree

as in the homoskedastic version presented in Signorino (2003). Denote Player 1’s probability

of choosing action a2 as pAE
1 , and Player 2’s probability of choosing a4 as pAE

2 . Player 2

8In a homoskedastic SP model, in contrast, depending on the interpretation, variance of the uncertainty
term is either assumed to be a known constant, usually 1, or the coefficients are estimated and reported to
a scale of the unknown standard deviation, because of identification restrictions.

9The private information version can be derived similarly, which is presented in the Appendix.
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chooses a4 over a3 if EU∗
2(a4) ≥ EU

∗
2(a3). Thus,

pAE
2 = Pr(EU∗

2(a4) ≥ EU
∗
2(a3)) (2)

= Pr(U2(Y3) + α24 ≥ U2(Y2) + α23) (3)

= Φ

(
U2(Y3)− U2(Y2)√

ν2
23 + ν2

24

)
(4)

Deriving Player 1’s choice probability can be achieved in a similar way:

pAE
1 = Pr(EU∗

1(a2) ≥ EU
∗
1(a1)) (5)

= Pr((1− pAE
2 )(U1(Y2)) + pAE

2 (U1(Y3)) + α12 ≥ U1(Y1) + α11) (6)

= Φ

(
(1− pAE

2 )U1(Y2) + pAE
2 U1(Y3)− U1(Y1)√

ν2
11 + ν2

12

)
(7)

Based on these action probabilities, the probability of reaching a particular outcome in the

strategic model depicted in Figure 1 can be calculated:

PrAE(Y1) = 1− pAE
1 (8)

PrAE(Y2) = pAE
1 (1− pAE

2 ) (9)

PrAE(Y3) = pAE
1 pAE

2 (10)

How do we specify the heteroskedastic agent error variance in the above model? The variance

of the stochastic αij terms represent the players’ tendency to miscalculate and deviate from

the optimal action. αij terms are distributed normally with zero mean and variance ν2
ij. The

standard deviations νij vary across different observations as functions of regressors Z:

νij = exp(γZ) (11)

This error specification is in the multiplicative form as discussed in Harvey (1976). There

is no constant term in the error specification because of identification restrictions.10 When

10This is akin to assuming that the variance parameter is equal to one in a homoskedastic probit model.
An alternative sometimes considered in the literature is not making this assumption, and instead estimating
coefficients scaled by the square root of the unknown constant variance parameter. Similarly, an unknown
constant term can be added to the heteroskedastic error structure, which would imply that the coefficient
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γ = 0, the variance term becomes constant across observations, and the heteroskedastic

model reduces to a homoskedastic SP model. For γ �= 0, this specification allows each ob-

servation (or actor) to have a potentially different error variance. In other words, if agents

are state leaders, each leader potentially has a different tendency to deviate from optimal

expected utility calculation, captured by the variance of the agent error term.

The log-likelihood function for the HSP estimator with agent error specification is as

follows:

LAE =
N∑

n=1

3∑
j=1

Inj ln(Pr
AE(Ynj)) (12)

where Inj is the indicator function that takes the value 1 when the outcome is j in obser-

vation n and zero otherwise. PrAE(Ynj) is the outcome probability for outcome j in a given

observation n.

This model can be estimated very easily in common statistical software like Stata, R, or

Gauss. An example Stata code is included in the Appendix that shows how to define the

log-likelihood function and run the estimation procedure.

2.2 A Hybrid Model with Two Sources of Uncertainty

Agent error and private information as two sources of uncertainty need not be mutually

exclusive in a given strategic interaction. In fact, one can easily argue that, as two distinct

theoretical concepts, both sources of uncertainty are present in a strategic situation. We can

have players possessing private information about their payoffs, and at the same time making

miscalculations or implementation errors in their choices. In this case, a researcher would

need to be able to estimate the two sources simultaneously in a SP model. When the errors

are assumed to have constant variance, as in a homoskedastic model, a hybrid model of this

estimates in a player’s utilities are estimated to a scale.
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sort cannot be estimated, simply because the model cannot identify and isolate both error

variances. On the other hand, when certain identification restrictions are satisfied, these two

sources of uncertainty can be incorporated into a single HSP model. In particular, when

the two sources of uncertainty are linked to mutually exclusive sets of regressors, a hybrid

model that incorporates both the agent error and private information specifications can be

estimated. For instance, in a crisis interaction model in international relations, based on

theoretical expectations from the literature, actor characteristics such as age, or experience

can be used to model bounded rationality, while regressors at the interaction or system

level such as system polarity, the distance between the two countries in conflict, or regime

type similarity, can be used to model private information variance. When shared factors

are hypothesized to affect the two error variances for a given player, however, a hybrid

heteroskedastic model will no longer be identified, as two separate coefficients for a regressor

that appears in both uncertainty variances cannot be estimated simultaneously.11

One obvious question that arises is what would happen when the underlying model is a

hybrid heteroskedastic model that incorporates both types of uncertainty, but the analyst

estimates either an agent error or private information specification? Similarly, if a hybrid

model cannot be estimated due to identification problems stemming from shared regressors,

would a private information or agent error heteroskedastic model be a close enough approx-

imation? One of the Monte Carlo experiments I conduct in the next section will address

these issues.

11The derivations of the hybrid heteroskedastic probit choice probabilities are a simple extension of the
derivations for the agent error and private information specifications, and therefore not presented here. They
are available from the author upon request.
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3 Monte Carlo Analyses

In this section, I conduct three sets of Monte Carlo analyses to assess the statistical properties

of various HSP models based on the simple game structure in Figure 1.12 In the first set

of simulations, I evaluate the bias in a homoskedastic SP model when the data generating

process is heteroskedastic. Then, in the second set, I look at the potential bias and inefficiency

in fitting a HSP model when there is no heteroskedasticity in the data generating process.

The last set of results is presented to demonstrate the better identification properties of a

heteroskedastic model over the homoskedastic variant. In these simulations, a hybrid model

involving both agent error and private information as sources of uncertainty is estimated. As

argued in the previous section, such a model can only be estimated with a heteroskedastic

error structure. I then compare this model to a heteroskedastic agent error, heteroskedastic

private information, and homoskedastic SP models.

[Table 1 is about here]

The equations below summarize the general structure of the three Monte Carlo analyses.

Table 1 lists the parameters manipulated in the Monte Carlo analyses and summarizes the

values they take in each set of simulations.

U1(Y1) = β110 + β11X11 (13)

U1(Y2) = β12X12 (14)

U1(Y3) = β130 + β13X13 + β13aX1 + β13bXc (15)

U2(Y2) = 0 (16)

U2(Y3) = β230 + β23X23 + β23aX2 + β23bXc (17)

12Monte Carlo data sets and the simulation code are available upon request.
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where X1, X2, and Xc ∼ Uniform(0, 1), and the rest of Xi ∼ Normal(0, 1). For identification

reasons, U2(Y2) is normalized to zero and U1(Y2) does not include a constant. There are

several shared regressors in this specification: X1 appears in Player 1’s utility for outcome

Y3, as well as Player 1’s private information variance specification. Similarly, X2 appears in

Player 2’s utility for outcome Y3 and Player 2’s private information variance specification.

Xc is a common regressor that appears in both Player 1 and 2’s utilities for Y3, and also

their private information variance specifications. The rest of the regressors are included in

only one utility.

For the private information specification, which is used in Monte Carlo analyses 1 and 3,

εij ∼ N(0, υ2
i ), and

υ1 = exp(α1X1p + α1aX1 + α1bXc) (18)

υ2 = exp(α2X2p + α2aX2 + α2bXc) (19)

where Xip ∼ U(0, 1), and the rest of the regressors are as defined previously. For the agent

error variance, which is used in the data generating process of Monte Carlo experiment 3,

εij ∼ N(0, ν2
i ), with

ν1 = exp(γ1X1e) (20)

ν2 = exp(γ2X2e), (21)

where Xie ∼ U(0, 1).

3.1 MC Analysis 1: Failure to Model Heteroskedasticity

In this experiment, I evaluate the bias in a homoskedastic SP and an agent error HSP model

when the data generating process is heteroskedastic with a private information component.

The homoskedastic SP model used in the analysis employs a private information specifica-
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tion which does not correct for heteroskedasticity. The agent error heteroskedastic model

corrects for heteroskedasticity, but specifies regressors Xip, Xi, and Xc for each player in

the agent error variance parameter rather than the private information variance, resulting in

a functional form misspecification. Finally, the private information HSP model follows the

functional form and regressor specification of the data generating process.

The first row of Table 1 summarizes the parameter values used in the experiment. I

generate simulation data based on these values, and estimate the three models for sample

sizes N = {200, 300, 500, 1000, 2500, 5000, 10000}.13

[Table 2 is about here]

Table 2 presents the estimation results for four coefficients from the models: β13, β23b, α1b,

and the standard error estimate for β13. For each sample size and the estimator, the table

gives a 95% confidence interval based on the simulated coefficient values. In each cell, the

top number is the lower bound, and the bottom value is the upper bound of the confidence

interval. The table shows that, out of the three estimators considered, the private information

HSP offers coefficients closest to the true data generating value for each parameter.

[Table 3 is about here]

However, a direct comparison of coefficients across the three models might potentially

be misleading, as each coefficient might be scaled differently for each estimator due to the

presence of heteroskedasticity. For this reason, Table 3 offers a more accurate comparison

by evaluating each estimator’s performance in predicting the probability of outcome 3, or

P (Y3) = p1 × p2, which is on average around .25 in the data generating process. For each

13For the first five sample sizes, 2500 iterations were completed. The number of Monte Carlo iterations is
2000 for N=5000, and 750 for N=10000.
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sample size, Table 3 offers three indicators:

Mean Bias =
√
mean [(PrEi (Y3)− PrDGP

i (Y3))2] (22)

Maximum Bias =
√
max [(PrEi (Y3)− PrDGP

i (Y3))2] (23)

Median % Bias = median

[√
(PrEi (Y3)− PrDGP

i (Y3))2
/

PrDGP
i (Y3)

]
(24)

For an observation i, PrEi (Y3) denotes a given estimator’s probability estimate for outcome

Y3, and PrDGP
i (Y3) is the same outcome probability according to the data generating process.

Intuitively, Mean Bias is the root mean squared error (RMSE), or it measures the average

bias – in absolute terms – in the outcome probability estimate of a given estimator for a

given observation. Each reported value in the table is the mean value of this statistic in

the 2500 MC iterations completed for a specific sample size. The standard deviation of the

statistic is also reported in parentheses below the mean value. For instance, the first cell on

the left reports a value .092, which indicates that in 2500 samples simulated for sample size

N=200, on average there was .092 bias in the outcome probability estimate of the private

information heteroskedastic model. Similarly, Maximum Bias reports the largest bias, in

absolute magnitude, in the probability estimate in a given simulation sample. The reported

value in the table takes the mean of these largest bias values over the 2500 samples simulated.

Finally, Median % Bias calculates the bias in absolute terms as a percentage of the actual

probability estimate from the true data generating process, and takes the median value in a

given sample. The table reports the mean of these median values for the simulation samples.

Substantively, this measure differentiates a .10 bias in the probability parameter when the

true probability from the data generating process is .20 versus .80. Even though the absolute

bias is the same in both cases, the bias might be regarded as more severe in the former than

the latter relative to the true probability value.

According to the Mean Bias measure, the HSP estimator with the private information

specification produces probability estimates with a relatively small bias in small samples,
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and this bias disappears as the sample size gets larger. The agent error specification has a

slightly larger bias, which also gets smaller as the sample size increases. The homoskedastic

SP, on the other hand, on average has more biased probability estimates. The bias in the

homoskedastic SP estimates does not disappear as the sample size increases, and for a given

observation, the expected bias converges to around .118. This is quite large considering

that the average value of the outcome probability P (Y3) in the data generating process is

.25. This is also verified by the Median % Bias indicator. Even in samples of larger

sizes, the homoskedastic estimator produces probability estimates with biases that are on

average around 35% of the actual outcome probability. The private information and the

agent error heteroskedastic models, in contrast, produce smaller biases in percentage terms,

which disappear as the sample size increases.

Finally, in terms of the Maximum Bias criterion, the homoskedastic estimator on av-

erage produces at least one probability estimate that differs from P (Y3) by as much as .60

in each sample. This large bias does not disappear in larger sample sizes. In contrast, the

private information and the agent error heteroskedastic specifications produce milder maxi-

mum biases, which get smaller for larger sample sizes. For N=10000, for instance, the largest

deviation from P (Y3) in the sample is on average about .19 for both estimators.

To sum up, the Monte Carlo analysis shows that, when heteroskedasticity is present

in the data generating process of a SP model, the estimator should correct for it to avoid

potential bias. The results suggest that, for a simple game structure like the one considered

here, it does not make much practical difference if the agent error or the private information

specification is used to model heteroskedasticity. As long as heteroskedasticity is accounted

for in the estimation, the small misspecification of the functional form with the agent error

model is not of a major concern. On the other hand, when heteroskedasticity is present, the

failure to correct for it can result in bias and misleading inference.14

14One potential caveat to this result is that HSP is a slightly more data intensive approach than the
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3.2 MC Analysis 2: Fitting a Heteroskedastic Model When Errors

Are Homoskedastic

What happens if heteroskedasticity is not present in the data generating process and the

analyst fits a heteroskedastic model? Would this be a source of bias or inefficiency in the

estimates? This Monte Carlo experiment assesses the effects of running a HSP model, when

the underlying model is in fact homoskedastic with private information specification. The

second row of Table 1 lists the parameter values used to generate the Monte Carlo data for

analysis. As the table shows, all the coefficients in the agent error and private information

variance components take the value of 0 to make the data generating process homoskedastic.

The two heteroskedastic models in the experiment unnecessarily include variables Xip, Xia,

and Xc in their uncertainty variance specifications for players i=1,2.

[Table 4 is about here]

Table 4 summarizes the simulation results for coefficients β13, β23b, α1b, and the standard

error estimate of β13. Not surprisingly, except for a minor small sample bias, the homoskedas-

tic SP successfully captures all the parameters. Moreover, the confidence intervals produced

by the homoskedastic estimator narrow as the sample size increases, indicating consistency.

The HSP estimator with private information specification also approximates the population

coefficient values well. As in the homoskedastic case, there seems to be a minor small sam-

ple bias which disappears with larger sample sizes. The agent error heteroskedastic model

seems to fare slightly worse than the private information version for Player 1’s coefficients,

due to the misspecification of the uncertainty structure. Yet, even this estimator provides

homoskedastic variant due to the extra parameters being estimated in the model. For this reason, especially
in smaller samples, users are advised to carefully evaluate convergence of their estimates by running their
model with multiple starting values, as well as utilizing different optimization algorithms that are offered by
statistical software.
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close enough approximation for coefficients. The main difference between the homoskedas-

tic versus the heteroskedastic variants seems to be estimation uncertainty, in particular the

width of the confidence intervals, and the size of the standard errors. Not surprisingly, the

presence of irrelevant parameters in the heteroskedastic estimators decreases the efficiency of

the estimated coefficients. Both heteroskedastic models produce wider confidence intervals,

and larger standard errors than the homoskedastic model.

Interestingly, the coefficient estimates for the variance specification of the two het-

eroskedastic models reveal that both models estimate coefficients that are not statistically

different from zero when there is no heteroskedasticity. This is true even for the coefficient

of the regressor Xc, which appears in both players’ heteroskedastic variance specifications,

as well as in their utility specifications for outcome Y3. The models managed to isolate the

effect of this variable on the utilities by estimating βib successfully, and reported no effect for

the variance specification by estimating αib not distinguishable from 0. This is reassuring,

as it means that the heteroskedastic models are not likely to result in incorrect inference

regarding actor-level variance in the amount of uncertainty, and they are not more likely

than the homoskedastic model to cause Type I errors.

As in the previous Monte Carlo analysis, I look at three indicators, Mean, Maximum,

and Median % Bias, to evaluate the three models’ relative performance in predicting

P(Y3). These indicators are presented in Table 5. All three indicators suggest that, the

homoskedastic SP model has a small sample advantage over the heteroskedastic variants

in terms of the accuracy of the probability predictions. When N=200, on average, a given

prediction from the homoskedastic model has about .07 bias, while the two heteroskedastic

models on average miss the true probability value by .10. However, this advantage disappears

as the sample size increases. For N=10000, the difference in the mean bias between the

homoskedastic and the HSP models considered is less than .01.
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[Table 5 is about here]

To sum up, this Monte Carlo analysis demonstrates that, statistically, modeling het-

eroskedasticity when it is absent in the data generating process is not as serious of a problem

as failing to model heteroskedasticity when it is present. The former is mainly an efficiency

problem, which disappears in larger samples, while the latter is a potential source of bias

and inconsistency.15

3.3 MC Analysis 3: A Hybrid Heteroskedastic Model

In this Monte Carlo experiment, I evaluate the bias in the agent error and private information

HSP models, as well as a homoskedastic SP model, when the underlying theoretical model

is a hybrid model that incorporates both agent error and private information as sources of

uncertainty. The underlying game structure is the same as in the previous two Monte Carlo

analyses. The last row of Table 1 lists the parameter values used to generate the data with a

hybrid uncertainty structure. This hybrid heteroskedastic model includes Xip in the private

information variance, and Xie in agent error variance for each player. The heteroskedastic

private information model, in contrast, includes both Xip and Xie in the private information

variance for each player. Similarly, the agent error heteroskedastic model includes these

variables in the agent error variance. Finally, the homoskedastic model puts these regressors

in each player’s utility for outcome Y3, and assumes a private information specification with

a constant variance.

[Table 6 is about here]

15That being said, the inefficiency-bias trade-off between HSP and the homoskedastic SP needs to be
evaluated carefully in small samples. When the sample is small, users should at least consider reporting
both the HSP and the homoskedastic SP results. If none of the coefficients in the error specification are
significant in HSP, the homoskedastic SP should be preferred.
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Table 6 presents the coefficient estimates of β13, β23b, α1b from the four estimators. Sim-

ilarly, Table 7 provides a comparison of the predictive performance of the four models by

focusing on outcome probability estimates. Not surprisingly, the results suggest that the

hybrid model provides probability estimates with the least bias among the four models. In

contrast, the homoskedastic SP produces coefficients with the largest outcome probability bi-

ases. For each of the four estimators, the bias in probability estimates becomes smaller, and

the estimates get more efficient as the sample size increases. However, even with N=10000,

there is a sizeable average bias in the homoskedastic model’s probability estimates for a given

observation (∼.08). The agent error and the private information heteroskedastic models, in

contrast, produce smaller biases on average (∼ .04).

[Table 7 is about here]

To sum up, this analysis shows that, a hybrid heteroskedastic model incorporating both

types of uncertainty can be estimated if mutually exclusive regressors are used to model the

private information and the agent error variances for each player. Second, even if the under-

lying data structure is a hybrid model, fitting a heteroskedastic model with an agent error or

private information specification does not cause serious problems: as long as heteroskedas-

ticity is accounted for, misspecifying the uncertainty structure only introduces minor bias

as long as all the regressors for heteroskedasticity are included in the variance specification.

This is reassuring, because it suggests that even if the underlying hybrid model does not

have mutually exclusive regressors for the agent error and the private information variance

– hence a hybrid model cannot be identified – fitting a slightly misspecified heteroskedastic

model with only one source of uncertainty present but all the regressors included provides

a close enough approximation. The failure to model heteroskedasticity when it is present,

on the other hand, creates more serious problems and increases the danger of misleading

inference.
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4 Applications of Heteroskedastic Strategic Models

The previous section has only considered the statistical benefits of incorporating heteroskedas-

ticity in strategic models for more accurate inferences. Given that many statistical models

in the discipline are probably only approximations of more complex functional relationships,

and various forms of misspecifications might almost always be present in empirical analyses

due to data issues or computational difficulties, the bias reduction achieved by incorporating

heteroskedasticity in a strategic model by itself might be considered a limited contribution.

Fortunately, HSP models studied in this paper have significant substantive value as well,

as they make possible addressing many interesting research questions that have not been

considered before due to the lack of appropriate methods. Below, I discuss two application

areas for heteroskedastic models. First, I provide a replication of an existing study that uses

a homoskedastic strategic probit model. I then discuss the potential extension of the model

I develop in this paper to recent strategic models of signaling and belief updating. These

examples show that, using this method, interesting research questions can be addressed on

the amounts of uncertainty in a strategic interaction.

4.1 Application I: An Analysis of Speculative Currency Crises

In order to demonstrate the benefits of using the HSP estimator, in this section I replicate

Leblang (2003)’s analysis of speculative currency attacks.16 Speculative attacks on curren-

cies is one of the important areas of research in international political economy (Obstfeld,

1996; Morris and Shin, 1998; Leblang, 2003; Leblang and Satyanath, 2006). The main goal

of this replication is not to show that Leblang’s results are biased due to unmodeled het-

eroskedasticity. Instead, this section aims to show that, by modeling the variance parameter

16I pick Leblang’s analysis for replication because, first, it is an influential article that focuses on the
strategic aspect of speculative attacks; second, it uses a SP estimator to incorporate strategic interaction
into empirical analysis; and third, the replication data set was kindly provided by the author.
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in the study of speculative attacks, interesting new research questions can be addressed and

additional insights can be gained that can improve our understanding of this important

phenomenon, and structure the future debate on this topic.

Why do speculative attacks on exchange rate pegs occur? Why do some governments al-

low their currency to devalue while others take costly measures to defend their currency? To

answer these questions, Leblang employs a homoskedastic SP model. He theorizes that spec-

ulative attacks are a result of strategic interaction between speculators in currency markets

and policy makers in governments. He argues that speculators attack national currencies

based on their expectations about policymakers’ policy response, which in turn depends on

institutional, electoral, and partisan factors (Leblang, 2003).

The interaction between international financial markets (Market) and policymakers in

a government (Government) starts with Market deciding between initiating a speculative

attack or not. If Market initiates, Government can either defend or devalue its currency.

The three outcomes of the game, therefore, are Status Quo, Devaluation, and Defense. Using

a homoskedastic SP model, Leblang estimates Market ’s Devaluation and Defense utilities,

and Government ’s Devaluation utility with constants. To model Market ’s Status Quo util-

ity, Leblang uses Capital controls, Log(reserves/base money), Exchange rate overvaluation,

Domestic credit growth, U.S. domestic interest rates, Debt service, Contagion, and Number

of prior attacks. In Government ’s Defend utility, included variables are Unified government,

Log(exports/GDP), Campaign and election period, Post-election period, Right government,

Real interest rate, Capital controls, and Log(reserves/base money). Table 9 provides de-

scriptions of the variables used in replicating Leblang’s results.17

[Table 9 is about here]

A replication of Leblang’s homoskedastic SP results is presented in the left half of Table

17For a more detailed description of these variables and their coding, see Leblang (2003), page 544.
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8. The homoskedastic SP model that Leblang uses assumes that the uncertainty variance

is constant across observations in the sample. Leblang’s data set consists of monthly obser-

vations of 90 developing economies from January 1985 to December 1998, a total of 7240

observations. Given the size and the range of this sample, heteroskedasticity constitutes a

valid concern that might affect inferences. More importantly, scholars might be interested

in finding out factors influencing the levels of uncertainty in this strategic interaction. For

example, it would be interesting to test if there are any factors affecting the likelihood of

sub-optimality in Market ’s choice of launching speculative currency attacks against different

governments, which can be captured with a HSP model with agent error specification.

[Table 8 is about here]

Thus, in Table 8, I also present the results from a HSP model with agent error specifi-

cation, which hypothesizes that Market ’s agent error variance, or speculators’ tendency to

make suboptimal choices, changes across observations as a function of certain political fac-

tors in the target country.18 More specifically, I test the hypothesis that Market ’s tendency

to make suboptimal speculative attacks increases during campaign and election periods, rep-

resenting an environment with additional political uncertainty. I also test if the regime type

of the target country, measured by the country’s Polity score (Marshall and Jaggers, 2007),

has any effect on Market ’s agent error variance in deciding to launch a speculative attack or

not.19

According to Table 8, substantively interesting results emerge from the heteroskedastic

18The possibility that speculators are not perfectly rational, fully informed agents has been acknowledged
in the literature before (e.g. Calvo and Mendoza (2000)).

19For simplicity, I assume that the agent error in Government ’s response to these attacks is homoskedastic,
because of the small number of observations in which governments actually get to choose. In the sample,
there are only 88 cases of speculative attacks out of 7240 observations, and this rarety of crisis cases makes
it difficult to fit a heteroskedastic model for Government ’s decision node as well. With the availability of
new data with more speculative attacks, a fully heteroskedastic model can be estimated.
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model’s variance estimates.20 Results indicate that the politically uncertain campaign and

election periods do not have a significant effect on Market ’s tendency to make suboptimal

choices in their decision to initiate a speculative attack or not. In contrast, regime type

has a significant effect on Market ’s error variance. The positive significant coefficient of the

Polity variable suggests that, when speculators face a potential target country that is more

democratic, they are more likely to make a choice that is suboptimal in deciding to launch

a speculative attack against the country’s currency. Substantively, based on this result,

the agent error variance of Market increases by 22% from an autocratic to a democratic

target state (the full range of the Polity variable). This is an important result, because it

suggests that existing studies on democracy’s effect on the likelihood of speculative attacks

provide only a partial picture of the relationship between regime type and speculative attacks.

While the previous literature has produced mixed results on this relationship (Leblang and

Satyanath, 2006, 2008), the application of HSP in this paper suggests that democracy makes

speculators more likely to make a suboptimal choice in their decision, which might in turn

influence their likelihood of launching a speculative attack against a democratic country.

Why do democratic countries make markets more likely to pick suboptimal choices? One

possibility is that there is additional uncertainty associated with democratic governments’

responses to a potential speculative attack, which increases the likelihood of a suboptimal

decision by speculators. Although it has been argued that democratic systems are more

transparent and should be associated with reduced policy uncertainty (Broz, 2002), scholars

have also argued that a divided government in a democracy might increase the uncertainty

markets have (Leblang and Satyanath, 2006). More generally, the existence of multiple

groups in democracies that might influence policy choices can make it hard for markets

20The utility estimates between the two models, on the other hand, are quite similar. Only a couple of
differences exist between the utility estimates of Leblang’s homoskedastic and the alternative HSP models.
In particular, Reserves in Government ’s utility becomes significant, and Prior Attacks in Market ’s utility
loses its significance in the heteroskedastic model.
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to predict a potential response by democratic governments to a speculative attack. For

instance, while Tsebelis (2002) argues that the existence of veto players might make policy

change difficult in political systems, it is also possible that the multiplicity of veto groups in

democracies, and bargaining among them over policy decisions might introduce additional

uncertainty for markets. In less democratic countries, in contrast, there are relatively fewer

groups that might influence the government’s response to a speculative attack, which reduces

the uncertainty markets have about the government’s response, reducing the likelihood that

they make a suboptimal choice in their decision to initiate a speculative attack or not.

Even though the HSP model provides a significant coefficient for Democracy, does it

significantly fare better than Leblang’s original model in terms of model fit? I use a likelihood

ratio test suggested by Alvarez and Brehm (1995) in the context of heteroskedasticity to

evaluate if a heteroskedastic strategic probit model is necessary over the homoskedastic

probit estimated by Leblang. In this test, the “null” model is the homoskedastic SP model

that restricts the variance to be constant across observations, and the alternative model

is the heteroskedastic model that does not make such a restriction. The test compares the

likelihoods of the two models, by calculating the likelihood ratio statistic LRS = −2(LHom−
LHet), where LHom and LHet are the log-likelihoods of the two models. This statistic follows

a χ2 distribution, with degrees of freedom equal to the number of parameters in the variance

specification of the heteroskedastic model. In comparing the two models in Table 8, LRS

is equal to 6.17, which is significant at the .05 level. This indicates that the heteroskedastic

model provides a statistically significant improvement in model fit over Leblang’s original

results.21

21In a working paper, Keele and Park (2005) warn users of heteroskedastic probit models of the danger
of fragile identification, which, they claim, can be hard to detect. As a minimum precautionary step, they
suggest the users of heteroskedastic probit models to use different starting values in estimation. In this
replication, I accordingly used 2,000 random starting values and a variety of maximization algorithms to
estimate the model. At the end, estimation always reached the same set of coefficient values presented in
Table 8.
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Are there alternative mechanisms through which democracies might influence the agent

error variance of markets? Are there other political or economic factors that influence mar-

kets’ or governments’ behavior and the overall amount of uncertainty in this strategic inter-

action? Further study beyond the scope of this paper is needed to answer these questions.

The main goal of this replication was to show that modeling variance can reveal new and

important information about the levels of uncertainty during speculative crises, which was

not available from previous studies on this subject that mainly focus on explaining the like-

lihood of speculative attacks. Hopefully these results will initiate a fruitful debate on this

topic.

4.2 Application II: Heteroskedasticity and Bayesian Updating

In recent years, increased attention has been given in the international relations literature

to strategic models that incorporate signaling and Bayesian updating (Lewis and Schultz,

2003; Whang, 2010). The strategic models I have considered in this paper so far do not

have this feature, as they involve only one decision node per actor in the game, making

signaling and updating irrelevant. When an actor moves more than once in a game with

uncertainty, however, the possibility of signaling and belief updating by players emerges, as

players can come up with better estimates of their opponent’s future behavior by observing

their previous choices. Heteroskedasticity can easily be incorporated into these models as

well, by linking the uncertainty parameter to regressors. Below, I discuss the potential

statistical and substantive advantages of doing so.

[Figure 2 about here]

Figure 2 depicts a simple crisis model with signaling, analyzed in Lewis & Schultz (2003).

Two states, A and B, dispute over a good that is possessed by B. In this interaction, A first
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decides to challenge the status quo or not. If A does not challenge, status quo (SQ) is the

outcome, with payoffs SA and SB to A and B, respectively. If A challenges B, B can resist

the challenge, or concede the good. If B does not resist, the outcome CD gives the good

to A peacefully, with payoff VA to A, and CB to B, representing the cost to B of losing the

good. If B resists, on the other hand, A can either stand firm and use force (SF), or back

down (BD). SF gives war payoffs WA and WB to A and B, respectively, and BD gives the

audience cost a to A, and VB to B, representing the value of the good for B.

This is a game of two-sided incomplete information where both states have uncertainty

about their opponent’s preferences. In particular, A is uncertain about B’s payoff from war,

WB, and B is uncertain about both a and WA. Similar to the SP specification in the previous

section, the uncertainty about the opponent’s payoffs is represented by normally distributed

random variables attached to observable outcome utilities: WA = WA + εA; a = a+ εa; and

WB = WB + εB, where εi represent a player’s private information that cannot be observed

by the opponent.

There is signaling and updating in this game because A’s first decision potentially reveals

information about A’s choice in this player’s second decision node. In particular, B updates

its belief about A’s likelihood of fighting, after observing A’s challenge decision. Lewis

and Schultz (2003) use the Perfect Bayesian Equilibrium (PBE) concept to analyze the

game and derive the equilibrium probabilities, including B’s posterior and prior beliefs.

The probabilities of A challenging (pC), B resisting (pR), B’s prior belief about A fighting

(pF ), and B’s posterior belief about A fighting given a challenge (pF |C) can be calculated as
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follows:22

pR = Φ

[
pF |C + (1− pF |C)VB − CB

pF |Cσ

]
(25)

pC = 1− Φ

(
SA − (1− pR)VA − pRWA

pRσ

)
Φ

(
SA − (1− pR)VA − pRa

pRσ

)
(26)

pF |C = Φ2

(
WA − a

σ
√
2

,
pRWA + (1− pR)VA − SA

pRσ
,
1√
2

)/
pC (27)

pF = Φ

(
WA − a

σ
√
2

)
(28)

From a statistical point of view, this updating model has a relatively more complex game

structure compared to the models I considered so far. Simple strategic models with no

updating, as discussed in the previous section, result in a recursive system of probability

equations, which implies dependence of actor choices on predictions about other actors’

preferences later in the game. Hence, in the models I considered, any bias in a choice

probability is transferred to the probability estimates for upper decision nodes, but this bias

does not affect probability estimates for choices further down the game tree. The Bayesian

updating model analyzed in Lewis & Schultz (2003), in contrast, displays a stronger, non-

recursive interdependence of choices: because of the updating and signaling dynamics in

the model, each actor choice probability depends directly or indirectly on the rest of the

probabilities in the model, and any bias in any choice probability has implications for the

rest of the probabilities.

Lewis & Schultz (2003) make a homoskedasticity assumption about σ, the standard

deviation of the random private information components capturing the amount of private

information. Is this a restrictive assumption in a Bayesian updating model? It is clear that σ

plays a role in all four probabilities of Lewis & Schultz’s (2003) model. Thus, as in the simpler

strategic models considered in the previous section, the misspecification of this parameter

will likely be a source of bias in the equilibrium probability estimates. Moreover, because of

22A detailed derivation of these probabilities appears in Lewis & Schultz (2003).
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the stronger interdependence in a signaling model, the failure to model heteroskedasticity –

if it exists – is likely to have even more serious effects on the estimation results and inferences

than in a simple strategic model with no updating.23 This is especially a relevant issue in

international relations empirical analysis as the data sets analyzed tend to be cross-sectional

and show a high level of actor heterogeneity.

By affecting B’s prior and posterior estimates of A’s fighting choice, parameter σ also

indirectly affects the amount of updating by B in the Lewis & Schultz (2003) model. The

equilibrium amount of updating – the difference between B’s prior and posterior estimates

of Player A’s probability of fighting at the last node – equals to:

pF |C − pF =
Φ2

(
WA−a

σ
√
2
, pRWA+(1−pR)VA−SA

pRσ
, 1√

2

)
pC

− Φ

(
WA − a

σ
√
2

)
(29)

In this expression, the variance parameter appears in a non-linear form in both B’s pos-

terior and prior estimates. Figure 3 plots B’s prior and posterior probability estimates of

A’s fighting choice, and shows the amount of updating as a function of σ for an example

specification used in Lewis & Schultz (2006).24 This example clearly shows that the amount

of updating varies depending on the amount of initial uncertainty, and that it is non-linear

and non-monotonic in the amount of private information Players A and B have. For this

specific example, the largest amount of updating occurs when σ ∼ .83, and the amount of

updating diminishes at a higher rate for σ < .83 and at a lower rate for σ > .83.

[Figure 3 about here]

This relationship between σ and updating is relevant to a recent debate in the literature

regarding the amount of updating in strategic models of signaling. Scholars have argued

23Heteroskedasticity can easily be incorporated into this model by using the following link function: σ =
exp(γZ) where Z is the set of regressors (excluding a constant) that are expected to affect the error variance,
and γ is the coefficient vector for these regressors.

24In this example, SA = 0, VA = 1, VB = 1, CB = 0, W̄A = −2.9, W̄B = −.5, and ā = −3.5.
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that, in the existing statistical models of signaling, the estimated amount of updating by

players remains limited (Lewis and Schultz, 2006; Wand, 2006). The analysis here suggests

that misspecification of the uncertainty parameter is a potential reason for limited updating

found in a signaling model that assumes homoskedastic errors. If a sample of international

crises includes countries with different amounts of private information, which implies different

levels of updating by their opponents, using a model that forces each country to have the

same amount of private information might result in misleading inferences about not only

actor choices but also the levels of updating by actors.

Modeling σ with regressors to capture this heterogeneity, instead of assuming a constant

σ across all observations in the sample, can eliminate this bias, and also provide scholars with

new insights into factors influencing the amount of private information and belief updating

in international relations. In the international conflict literature, for instance, it has been

argued that democracies signal their preferences more effectively during international crises.

Modeling σ can help us test if democracies enter into a crisis with lower levels of private

information to begin with, or if their opponents experience a larger shift in their beliefs

compared to opponents of other countries.

5 Conclusion

The objective of this paper has been to offer a method to capture actor-level variations

in the amounts of uncertainty in statistical models of strategic interaction that has been

gaining popularity in recent years in the international relations literature. The Monte Carlo

analyses presented in this paper have shown that, if not controlled for, the presence of

heteroskedasticity in the uncertainty parameters of such models can be a source of bias

and inconsistency in estimates. The method proposed here accounts for heteroskedasticity,
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without adding significant complexity to the estimation and interpretation of these models.

More importantly, one major advantage of the proposed method is that it makes pos-

sible answering many substantively interesting questions about the levels of uncertainty in

a strategic interaction, which have been mostly avoided in the literature due to the lack of

appropriate methodological tools to measure the theoretical concepts. The models presented

in this paper are valuable tools for analyzing factors that affect the severity of informational

asymmetry, sources of suboptimal behavior, and the amount of Bayesian updating in strate-

gic situations. They promise international relations researchers new and important venues

for future research.
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A Appendix

A.1 Heteroskedastic SP with Private Information Specification

With the private information specification, an important assumption in the underlying game
theoretic model is that players possess private information about their payoffs, and as op-
posed to the agent error specification, they are assumed to act perfectly rationally given the
information available to them. The true utility for Player i from outcome Yj, j ∈ {1, 2, 3}
is U∗

i (Yj), and only Player i can observe this perfectly. The other player and the analyst
have uncertainty about the exact payoff Player i gets from outcome Yj. The uncertainty is
formalized as a stochastic term εij attached to the outcome utilities:

U∗
i (Yj) = Ui(Yj) + εij (30)

The systematic part of the utility U∗
i (Yj) is common knowledge to everyone, including the

analyst. However, only Player i observes εij and the opponent and the analyst have distri-
butional information about it. εij are assumed to follow N(0, υ2

ik).

Similar to the agent error specification, in order to derive the choice probabilities, we
need to work backwards up the game tree. Player 2 chooses a4 over a3 if U∗

2(a4) ≥ U∗
2(a3).

Thus,

pPI
2 = Pr(U∗

2 (a4) ≥ U∗
2 (a3)) (31)

= Pr(U2(Y3) + ε24 ≥ U2(Y2) + ε23) (32)

= Φ

(
U2(Y3)− U2(Y2)√

υ2
23 + υ2

24

)
(33)

Deriving Player 1’s choice probabilities can be done in a similar way:

pPI
1 = Pr(EU1(a2) ≥ EU1(a1)) (34)

= Pr((1− pPI
2 )(U∗

1 (Y2)) + pPI
2 (U∗

1 (Y3)) ≥ U∗
1 (Y1)) (35)

= Pr((1− pPI
2 )(U1(Y2) + ε13) + pPI

2 (U1(Y3) + ε14) ≥ U1(Y1) + ε11) (36)

= Φ

⎛
⎝(1− pPI

2 )U1(Y2) + pPI
2 U1(Y3)− U1(Y1)√

υ2
11 + (1− pPI

2 )2υ2
13 + pPI

2
2
υ2
14

⎞
⎠ (37)

υ2
ij, variance terms of the stochastic εij, represent the severity of informational asymmetry.

The larger υ2
ij, the larger on average the private information Player i possesses. εij terms

are distributed normally with zero mean and standard deviation υij. As in the agent er-
ror specification, the standard deviation varies across different observations as functions of
regressors:

υij = exp(λD)
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where λ represents the coefficients and D is the matrix of regressors.25 The log-likelihood
function for the HSP estimator for private information specification looks exactly the same
as the agent error version, except the difference in outcome probability estimates, and is
specified as follows:

LPI =
N∑

n=1

3∑
j=1

Inj ln(Pr
PI(Ynj)) (38)

where PrPI(Y1) = 1− pPI
1 , PrPI(Y2) = pPI

1 (1− pPI
2 ), and PrPI(Y3) = pPI

1 pPI
2 .

The expressions in equations 4 and 33 reveal that the agent error and private information
specifications yield the same probability estimates for the second player. The difference is in
action probabilities for decision nodes higher in the game tree, as can be seen from equations
7 and 37.

25As in the agent error case, the constant is omitted from this specification.
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A.2 Sample STATA Code for a Heteroskedastic SP Model

We can estimate a HSP model in STATA very easily. In order to do so, we first define
our log-likelihood function, and then use the ml command available in Stata to perform
the maximum likelihood estimation. Suppose that the data generating process comes from
the game presented in Figure 1(A). The two variables that represent P1 and P2’s choices are
Attack, and Resist, respectively. In this example, we model utilities U1(Cap) with a regressor
X1, U1(War) with a regressor X2 and a constant, and U2(War) with a regressor X3 and a
constant. In addition, P1 and P2’s agent error variances α1 and α2 are modeled with Z1 and
Z2, respectively.

26

capture program drop heteroA lf

program define heteroA lf

args lnf u1cap u1war u2war alp1 alp2

tempvar p2res p1att expalp1 expalp2

qui gen double ‘expalp1’ = exp(‘alp1’)

qui gen double ‘expalp2’ = exp(‘alp2’)

qui gen double ‘p2res’ = normal((‘u2war’)/sqrt(2*‘expalp2’^2))

qui gen double ‘p1att’ = normal((‘p2res’*‘u1war’+(1-‘p2res’)*‘u1cap’) /*

*/ /sqrt(2*‘expalp1’^2))

qui replace ‘lnf’ = ln(‘p1att’) + ln(‘p2res’) if $ML y1 & $ML y2

qui replace ‘lnf’ = ln(1-‘p1att’) if !$ML y1

qui replace ‘lnf’ = ln(‘p1att’) + ln(1-‘p2res’) if $ML y1 & !$ML y2

end

ml model lf heteroA lf (u1cap: attack resist = x1, nocons) /*

*/ (u1war: attack resist = x2) /*

*/ (u2war: attack resist = x3) /*

*/ (alp1: attack resist = z1, nocons) /*

*/ (alp2: attack resist = z2, nocons)

ml search, r(500)

ml maximize

26In this example, U1(SQ) and U2(Cap) are normalized to zero.
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Figure 1: Theoretical Sources of Uncertainty in a Strategic Model
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Homoskedastic SP Heteroskedastic SP
Constants Market Government Market Government

Devaluation (G) -0.43 -0.04
(0.78) (0.77)

Devaluation (M) -3.66* -4.07*
(0.30) (0.34)

Defense (M) -3.14* -3.44*
(0.29) (0.32)

Homoskedastic SP Heteroskedastic SP
Market Government Market Government Market

Variable (Status Quo) (Defend) (Status Quo) (Defend) Variance (M)

Unified Government -0.35
(0.35)

-0.13
(0.41)

Export Sectort−1 -0.20
(0.17)

-0.18
(0.23)

Campaign/Election 1.66*
(0.75)

2.38*
(0.91)

-0.02
(0.10)

Post Election 1.06
(0.59)

1.21
(0.70)

Right Government -0.94*
(0.45)

-1.60*
(0.59)

Interest Ratest−1 1.93*
(0.64)

1.35*
(0.64)

Capital Controlst−1 -0.45
(0.25)

0.07
(0.75)

-0.41
(0.25)

0.51
(0.79)

Reservest−1 0.23*
(0.06)

0.31
(0.17)

-0.32*
(0.08)

0.62*
(0.20)

RER Overvaluation -0.44*
(0.09)

-0.48*
(0.09)

Credit Growtht−1 -0.06*
(0.03)

-0.07*
(0.03)

US Interest Ratest−1 -0.05
(0.06)

-0.08
(0.07)

Debt Servicet−1 -0.03
(0.05)

-0.02
(0.06)

Contagion -0.12*
(0.05)

-0.13*
(0.06)

Prior Attacks -0.12*
(0.05)

-0.10
(0.06)

Polityt−1 0.01*
(0.004)

N 7240 6345
Log-likelihood -482.02 -463.61

Table 8: Comparison of Leblang’s Homoskedastic Model with an Alternative Heteroskedastic
Model
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Variable Description

Unified Government Binary indicator for the ruling party controlling
both the executive and the lower house of the legislature

Export Sectort−1 Size of the export sector relative to GDP

Campaign/Election Binary indicator for campaign (3 months) and election times

Post Election Binary indicator for the 3-month period following
an election month

Right Government Binary indicator for a right government

Interest Ratest−1 Real interest rates

Capital Controlst−1 Binary indicator for controls on the capital account

Reservest−1 Log-ratio of total reserves to base money

RER Overvaluation Real exchange rate overvaluation

Credit Growtht−1 Domestic credit growth rate

US Interest Ratest−1 U.S. domestic interest rates

Debt Servicet−1 External debt service

Contagion Number of speculative attacks outside the country
in the same month

Prior Attacks Number of previous speculative attacks to the country

Polityt−1 Polity score of the country

Table 9: Descriptions of the Variables Used in Leblang (2003)
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